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Abstract. The contribution of normal electron-electron scattering to the electrical resistivity 
of K and Cuin the presence of an anisotropic relaxation time is calculated using the relaxation 
time approximation (RTA) and also, for the first time, using the formally exact variational 
method. As sources of anisotropic scattering we consider (i) electron-dislocation scattering 
according to a model of Kaveh and Wiser for potassium, and (ii) a high longitudinal magnetic 
field B applied to a copper single crystal. It is found that, as compared with the variational 
method, the RTA overestimates the increase of the electron-electron scattering resistivity 
pee = A, ,p  with anisotropy. The calculated enhancement ofA,, in copper by a magnetic field 
depends sensitively on the crystallographic orientation. Comparison with the experimental 
coefficients A,, for B I /  (111) yields an Umklapp fraction of A = 0.04-0.06 for electron- 
electron scattering in Cu, which is smaller than A = 0.28 as previously calculated by Black. 
The dislocation model cannot account quantitatively for the large variation in the exper- 
imental A,, in potassium. 

1. Introduction 

During the last decade the development of high-resolution experimental techniques at 
low temperatures has made possible the measurement of the electron-electron scattering 
(EES) contribution pee( T )  = A,,T2 to the electrical resistivity p( T )  of simple metals. For 
recent reviews see Schroeder (1982), Kaveh and Wiser (1984), Wiser (1984), and van 
Vucht et a1 (1985). The most striking observation from the experimental results is that 
the T 2  coefficient A,, is not the same for all samples of the same metal but exhibits a 
considerable sample dependence, in particular for K and Cu. 

Kaveh and Wiser (KW) (1980,1982,1983) have shown that the variation in A,, may 
be explained by deviations from Matthiessen’s rule (DMK). This deviation, following an 
idea of Peierls (1955), can be related to the indirect contribution of normal electron- 
electron scattering (NEES) to p,,(T) in the presence of an anisotropy in the electron 
relaxation time t(K) on the Fermi surface (FS). At the low temperatures where pee(T)  
can be observed, t ( K )  is determined by the scattering from static lattice defects, pre- 
dominantly from impurities and dislocations. In contrast to Umklapp electron-electron 
scattering (UEES), NEES itself does not contribute to the resistivity because of momentum 
conservation which implies current conservation in the case of a spherical FS. However, 
5 Present address: Institut fur Angewandte Physik, Universitat Hamburg, D-2000 Hamburg 36, Federal 
Republic of Germany. 
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NEES in the presence of an anisotropic z ( K )  will redistribute the conduction electrons by 
scattering them into regions of small t ( K )  and thus will reduce the current. KW assume 
dislocation scattering to be the source of anisotropy in z ( K )  and derive an expression 
for the enhancement of A,, by dislocations 

Here pimp and pdis denote the contributions of (isotropic) impurity and (anisotropic) 
dislocation scattering to the residual resistivity pr = p(T+ 0) of a metal sample. When 
the isotropic limitA Et and the ‘sample dependence’ SD (defined in equation (3.10)) are 
used as fitting parameters, then fairly good agreement is found with the experimental 
data for K and Cu (Steenwyck et a1 1981, Zwart et a1 1983, Thummes and Kotzler 1985). 

Recently, Thummes and Kotzler (1985) have also observed a strong enhancement 
of A,, by a high longitudinal magnetic field in single crystals of Cu. The enhancement is 
related qualitatively to a magnetic-field-induced anisotropy in z ( K )  . 

Although the effect of anisotropyon the~~mcon t r ibu t ion  toA,,is beyond doubt, the 
maximum possible value of A,, in the anisotropic limit, and thus the sample dependence 
which can be caused by NEES, is still ambiguous. The calculations of KW leading to 
equation (1.1) are based on a ‘generalised’ relaxation time approximation (RTA) orig- 
inally used by Callaway (1959) for the case of phonon scattering, the validity of which 
cannot be easily estimated. 

In this work we present calculations of the variation of A,, with the anisotropy in 
z ( K ) .  We consider two anisotropy models which are introduced in 8 2. These models 
are (i) dislocation-induced anisotropy according to KW (1980,1982), and (ii) magnetic- 
field-induced anisotropy in z ( K )  in a Cu single crystal as proposed by Thummes and 
Kotzler (1985). The calculations of A,, (8 3) are made by use of the RTA and, for the first 
time, also by use of the formally exact variational method (see for example Kohler 1948, 
and Ziman 1960), which allows conclusions about the validity of the RTA results. 

The main results, discussed in 8 4, are as follows: (i) the RTA overestimates the effect 
of anisotropy on A,, for both models of t ( K ) ;  (ii) the dislocation model cannot account 
quantitatively for the experimentally observed strong sample dependence of A,, iR K; 
and (iii) a longitudinal magnetic field enhances A,, in Cu to a maximum value which 
depends sensitively on the crystallographic orientation, that is, on the position of the 
necks on the FS with respect to the field. Comparison with the experimental data for Cu 
shows that the calculated effect on A,, is lower than observed experimentally. The 
agreement with the experiment may be improved by using in the isotropic limit a smaller 
UEES contribution than that calculated by Black (1978) for Cu, or by taking a more 
refined FS model in the calculation of the transport averages of z ( K )  as shown in Appendix 
3 .  

2. Models of relaxation time anisotropy 

2.1. Dislocation-induced anisotropy 

Dislocations are expected to cause an anisotropic relaxation time zdis(K), see, e.g., 
Wiser (1984). First, this is due to the marked spatial anisotropy of a dislocation line, 
which scatters electroiis moving perpendicular to it more strongly than those moving 
parallel. Second, the long-range strain fields surrounding the dislocation core give rise 
to a large number of small-angle scattering events, which effectively degrade the current 
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0 8  0 k,  

Figure 1. Models for an anisotropic relaxation time t ( K , ) .  Broken curve: dislocation scat- 
tering tdii(Kz) according to equation (2.1) with y / P  = (6 ) ' 12  for K. Solid line: scattering in a 
high longitudinal magnetic field in a (111)-Cu sample, according to equation (2.9). Both 
curves are normalised to the transport averages (td,Jrr and ( t ( B ,  K,)),,, respectively, as 
defined in equation ( 3 . 2 ~ ) .  

in those K-regions where the FS has a strong curvature. This second mechanism, as 
first suggested by Dugdale and Basinski (1967), probably determines the anisotropic 
electron-dislocation scattering in the noble metals, where t d l s ( K )  is much lower in the 
neck regions on the FS than in the nearly spherical belly regions (Bergmann et a1 1981). 

For dislocation-induced anisotropy we consider here the model of KW (1980,1982), 
which they originally use to calculate the sample dependence of A,, in potassium and 
later also apply to copper. Within this model, t i , l ( K )  depends only on the component 
K, of the wavevector parallel to the electric field and is given by a lowest-order Legendre 
expansion: 

where /3 denotes the average value on the FS and P2(K,) is the second Legendre poly- 
nomial. The function rdis(K) according to equation (2.1), with y / p  = as estimated 
for potassium by KW (1982), is illustrated in figure 1. 

Equation 2.1 represents the anisotropic limit of z ( K )  without impurity scattering. 
Taking into account isotropic electron-impurity scattering characterised by 
t zp = ~y = const, then the relaxation time determining the residual resistivity pr is given 
by the equation 

t ; ' ( K , )  = Ly + p + yP*(K,) .  (2.2) 
We emphasise that, in view of the complex network of dislocations present in a real 

metal sample, equation (2.2) can only represent a crude description for anisotropic 
electron-dislocation scattering. In 0 3.3 we use equation (2.2) in our calculation of A,, 
in order to facilitate the comparison with the result of KW. 

2.2. Magnetic-field-induced anisotropy 

The second anisotropy model to be considered in the calculation of A,, is based on the 
effect of a longitudinal magnetic field applied to a noble metal (Cu, Ag, Au). The model 
has been used by Thummes and Kotzler (1985) to explain qualitatively their observed 
enhancement ofA,, in Cu by a high longitudinal field. The basic idea, originally suggested 
by Pippard (1964) in his explanation of the longitudinal magnetoresistance in Cu, is that 
for W,T S=- 1 (U, = cyclotron frequency) the fast rotating necks on the FS form belts. 
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Within these belts z (B,  K )  tends to zero for w C t  + x ,  while in the belly regions t(B, K )  
remains essentially unaltered. 

The relaxation time anisotropy in the noble metals arising from a longitudinal 
magnetic field B in the z-direction can be obtained from the component a,, of the 
conductivity. After transformation from K,, Ky , K, to a new set of variables E (= energy), 
@ (= phase variable, 4 = w,) and K,, which are more appropriate in the case of a 
magnetic field, a,, can be written as (Chambers 1969): 

where P ( @ ~ ,  @*) represents the probability of an electron to move in a cyclotron orbit 
from to G 2  without being scattered. For an isotropic relaxation time t at B = 0 this 
probability is given by 

P(@1> @ 2 )  = exp[-(@, - @ l / W C Z > l .  (2.4) 
In the following we shall assume t at B = 0 to be isotropic, since here we shall only 
calculate the effect of the FS geometry on the relaxation time in a magnetic field. 
Assuming closed orbits the velocity component u,(K,, @) can be expanded into aFourier 
series, 

X 

UZ(K, ,  @) = UF 2 eiu' (2 .5)  
= --z 

where U - ,  = a ;  and uF = h K F / m  is the Fermi velocity on a spherical FS. By substituting 
this in equation (2.3) we get the following equation, first obtained by Pippard (1964), 

and 
X 

a(0) = (m/2) (eUF/nh)* t 2 / U ,  l 2  dK,.  i - x  

Restricting the calculation to the main symmetry directions (lll), (loo), and (110), and 
further assuming that the necks form sharp regions on the FS, i.e., u,(K,, @) on orbits in 
the neck regions changes between ivO(K,) ,  one has = v-* for odd numbers of v 
and otherwise luVl2 = 0. Then equation (2.6) reduces to 

2Nw,z n 
n tanh (-1 2Nw,t 

Here N is the number of necks on the orbit where U ,  changes sign. With the relation 
(a(B)/a(O)) K ,  = ( t ( B ) / t )  K , ,  equation (2.7) immediately leads to the anisotropic 
relaxation time in a magnetic field B ,  
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where 
-1 2 N o c t  

XB [y tanhi&)] - 1 

and 

in the neck regions i" t ( X . ,  K,)  = 
t elsewhere. 

(2. Sa) 

The relaxation time t(w, K,) represents the anisotropic limit in a strong magnetic 
field, wcz + x..  Figure 1 shows z(m, K,) according to equation (2.9) for the case of Cu 
withB parallel to the (111) direction. This case corresponds to the experimental situation 
in which the enhancement ofA,, has been measured and, therefore, it will be of particular 
interest for our calculations of the field dependence of A,, in 0 3.3. 

3. Calculations of A,, 

3.1. 'Generalised' relaxation time approximation 

In this subsection we calculate the dependence of A,, on an anisotropic relaxation time 
t(K) by use of the RTA which was first applied to this problem by KW (1980,1982). First 
we present the essential steps in their treatment in order to show more clearly the 
approximations involved, 

Since at low temperatures the resistivity pee = A,,T2 from EES is much smaller than 
the residual resistivity pr,  the calculation of A,, can start from the known solution of the 
linearised Boltzmann equation. This means that in an external electric field E the 
stationary nonequilibrium distribution function f ( K )  is determined by the known resid- 
ual relaxation time z , ( K )  due to static lattice defects, 

where E ( K )  and eF are the band energy and Fermi energy, respectively. In the case of a 
magnetic field z , (K)  has to be replaced by t(B, K z )  (equation (2 .8 ) ) .  

Now KW assume that the small rate of change in f ( K )  arising from NEES can be 
approximated by a relaxation time ansatz, 

where 

(3.2a) 

denotes the transport average over the spherical FS, where unlike KW we have included 
the energy average in the definition in order to account for the strong energy dependence 

The relaxation time t:e for NEES is taken to be independent of  K .  Because of  
momentum conservation NEES cannot equilibrate the electron system but causes it to 
relax to a distribution f [ K ,  ( T , ( K ) ) ~ , ]  which is shifted by a constant excess momentum 

Of EES, 
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eE(tr),, with respect to the equilibrium Fermi distributionfO(K). 
Expanding f [ K ,  s,(K)] in equation (3.2) and retaining only terms linear in r,  yields 

The form of equation (3.3) suggests the definition of an ‘effective’ relaxation time for 
resistive NEES where the latter only vanishes for constant t,. The total EES relaxation 
time with respect to resistivity is then given by the inverse of 

r 2 ( ~ )  = ( l / t Y e )  + ( 1 / r F e ) { 1  - [(rr)tr/’~r(K)I} (3.4) 
where z z is the relaxation time for UEES (also considered by KW to be independent of 

KW have not specified the conditions under which rFe and r g  are independent of 
K .  In Appendix 1 we describe the necessary approximations and show that then the 
scattering rates are given by (equations (A1.5) and (A1.lO)) 

1/tze = (2n2/3)(1 - A / t o )  (3.5a) 

l / rye  = (2n2/3)(A/tO). (3.5b) 

The quantities l/zo, A and A are defined in equations (A1.4), (A l . l l )  and (3.11), 
respectively. Here (2n2/3zo) means the energy averaged EES rate and the factor A is the 
so-called ‘fractional Umklapp scattering’ (Lawrence and Wilkins 1973), which is a 
measure of the average current depletion in an EES event. At  this point we make a clear 
distinction between A and the exact portion of UEES events A ,  as is discussed in more 
detail below. Note that, different from our treatment, KW assume A = 0. 

The EES resistivity pee can now be obtained from the total resistivity ptot = pee + pr = 
(mo,,/ne2) (ttot)G1 with r;: = ti: + t;’ (n = number density of electrons), 

(3.6a) 

Herem,,,is the optical mass which entersvia the transport average ( 3 . 2 ~ )  (e.g., Lawrence 
and Wilkins 1973) and which equals the effective mass m in the case of a spherical FS. 
Inserting t ; ; ( K )  from equation (3.4) into ( 3 . 6 ~ )  and proceeding with a simple cal- 
culation, again making use of the fact that t i ,  rFe S t r ,  one finally obtains the KW 
result, 

K) 

P e e  = (mopt/ne2 ) [ ( I / ( r t o t  ) t r  - (l/(r r )tr) I *  

pee = (mop t /ne2 ) [ ( l / t z )  (1 + R )  + (l/rFe) RI (rye isotropic) (3.6b) 

with the anisotropy parameter 

R = ( r : ) t r / (~X - 1. (3.7) 
The assumption of a K-independent 1 / t L  in equation (3.4), which leads to the 

positive DMR for the UEES resistivity in equation (3.6b), cannot be justified theoretically. 
Lawrence and Wilkins have estimated that UEES contributions mainly originate from 
electrons within a distance K < KFVG/~F (VG = Fourier component of the pseudo- 
potential) from the Bragg planes. Moreover, considering the case of magnetic field- or 
dislocation-induced anisotropy in Cu, where also the residual scattering rate t ; ‘ ( K )  is 
increased near the Bragg planes, one would rather expect equation (3.6b) to represent 
an upper limit for the effect of anisotropy on pee. 

In order to have a clear separation between the effects from UEES and NEES, we 



Anisotropy and electron-electron scattering resistivity 3627 

assume the validity of Mathiessen’s rule for the UEES contribution. This means that the 
UEES resistivity p g has a constant value as for isotropic residual scattering. Then, instead 
of equation (3.6b) we have 

- %(- + T R  ( p ~  = const.), 
P e e  - ne2 z,”, tee 7 ( 3 . 6 ~ )  

Inserting the relations (3.5) into ( 3 . 6 ~ )  gives the coefficient A,, = p e e / T 2  for aniso- 
tropic t , (K) 

A,, = A,[A + R ( l  - A)] ( 3  * 8) 
with 

A,  = (2n2/3)(m, , , /ne2to)T-*.  (3.8a) 

For isotropic t, the approximations leading to (3.5) are exactly valid (see Appendix 1)  
and then with R = 0 one obtains 

(3 .9)  ~ i s o  = 
ee A o A  

which is the original result of Lawrence and Wilkins. In the anisotropic limit the ani- 
sotropy parameter R achieves its maximum value R = Ran’ depending on the particular 
anisotropy model and consequently A,, increases to A E:’. The possible variation of A,, 
within the limits 0 =s R S Rani may be expressed by the sample dependence SD as 
introduced by KW (1980,1982) 

(3.10) 

The meaning of A ( A i . 1 1 )  is different from that of the ‘true fraction of UEES’ 

A = ( l~12Wu)/( l~12w (3.11) 

introduced in equations ( A 1 . 3 )  and ( 3 . 5 ~ )  (W, = W -  W, = UEES transition 
probability). While A measure the effectiveness of EES with respect to electrical trans- 
port, the quantity A measures the scattering rate for UEES. However, because UEES is 
effective in degrading the current, its relaxation time for transport should be of the same 
order as the UEES lifetime, and thus A = A .  Using an extension of equation ( B l )  in the 
work of Lawrence and Wilkins (1973) in the case where the wavevectors K2,  K3 and K4 
can be individually located near a Bragg plane, we have estimated the possible range of 
values: 

& ( G / ~ K F ) ’  < ( A / A )  8(C/2K,)* where G ~ K F .  

This estimate is supported by the numerical results of Black (1978) for Cu. It is evident 
from his table 10 that A and A agree within 10%. For A = A, equations (3.8) and (3.10) 
reduce to the simple relations 

A,, = Ao[A + R(l  - A ) ]  (pye  = const) 
SD = Rani[ ( l /A)  - 11. 

(3.12) 

(3.13) 

3.2. Variational method 

Most of the above approximations, which are connected with the concept of a ‘gener- 
alised’ relaxation time, can be avoided by use of thevariational method for the calculation 
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of A,,. The main difficulties now lie in the numerical evaluation of the formally exact 
variational integrals. 

At the low temperatures under consideration, as already mentioned above, EES has 
only a small effect on the stationary distribution functionf[(K, zr(K)], given by equation 
(3.1), which forms the solution of the Boltzmann equation. Thus, in the case of EES the 
variational method is reduced to the calculation of the EES resistivity, given by (e.g., 
Ziman 1960, Lawrence and Wilkins 1973): 

(3.14) 

Here we take $ = ( f  - fo)/(-dfo/d E) = -ev Ez, (K)  as the trial solution of the Boltz- 
mann equation X = P$. The Liouville and the collision term for EES are given by 

(3 .15~)  

P e e  = ( Q ,  P Q ) / ( $ ,  x)*. 

X = eu - (E/IEl)(dfo/de) 

and 

d 3 K 3  d3K4  
x 6 ( A ~ ) 2  - - d3K2 

( 2 4 3  ( 2 4 3  
(3.16a) 

respectively, where the notation K ,  = i has been used throughout. W(1,2-+ 3 ,4)  
denotes the transition probability for EES from statesK,, K2 to K 3 ,  K4 .  The inner products 
are defined by 

The integrals in equation (3.14) can be decomposed into surface and energy integrals. 
Making the reasonable assumption that zr(K) is independent of energy, the energy 
integration can be done in a way similar to that described in Appendix A of Lawrence 
and Wilkins (1973). Then we obtain the following expressions 

($> x> = (ne*/”opt)(tr)trE (3.15b) 

E2 
2n2 n e2 (IAuz,12w) 

($, fv) = --- 
3 mopt T o  4 ( 1 4 ~ w )  

(3.16b) 

where we use the same notations as in Appendix 1 (equations (A1.4)-(A1.6)). Inserting 
into (3.14) yields 

(3.17) 

In order to calculate the effect of anisotropy on pee it is now convenient to split up 
the term in large brackets into a normal and Umklapp portion. The variation of the UEES 
contribution with the anisotropy of zr(K) is small compared to that of NEES, and difficult 
to calculate. Thus, with the same arguments as led to equations (3.6c), we assume p:  
to be independent of t , ( K ) .  Then equation (3.17) gives for the coefficient A,, = p e e / T 2 ,  

(3.18) A,,  =Ao{A + AN(1 - A)} 
where we have introduced the quantity 

(3.19) 
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which is a measure of the effectiveness of NEES. Inspection of equation (3.8) shows that 
this expression is identical with (3.18) except that now the anisotropy parameter R is 
replaced by AN. 

We calculate AN by using the Born approximation for the NEES transition probability 
WN, which can be written as (e.g., Lawrence and Wilkins 1973): 

WN(1,2+3,4) = (2?t/Zi)[V2(/K1 -K31) -iV(IK, -K3I)V(IK1 -K41)16(AK). 
(3.20) 

For the screened Coulomb interaction among the electrons we take the Thomas-Fermi 
potential 

(3.21) v(q) = e2/[Eo(q2 + KtF)I 
where the Thomas-Fermi screening wavenumber is given by 

(3 .21~)  

Furthermore, assuming a spherical FS with radius KF (which implies that mopt = m) and 
neglecting the exchange term in WN both in the denominator and numerator of equation 
(3.19), we find 

where 

with the notations k, = K,/KF, kTF = KTF/KF and z, = t,(K,). 
For both anisotropy models under consideration (§ 2) the relaxation time depends 

only on the absolute value of K,, which is taken to be the direction of the current, i.e., 
t , (K)  = tr(lK21). In this case Zl(KTF) can be considerably simplified, as follows. After 
transforming to cylindrical coordinates and using the substitutions 

q1 = klL - k31 

U1 = k 4 L  -- k21 

P2 = q1 * k2J (qA21)  

P3 = q1 +31/(q1k31) 
we can carry out the integration over uI, p2,  p3, k21 and k31.  Then, the only remaining 
&function is 6(Ak,). Now, we make use of the fact that the integral is independent of 
the direction of q1 and substitute 
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k3r +4Y 
2 3  = k2z + U 

a 2 2  =- a 

witha*= (1 -i2)(1 - Y 2 ) ; f = X ( k ~ ~ / 2 ) .  
Then, the last b-function is eliminated by integration over U. The remaining integral 

is only threefold: 

where 

(3.23) 

Here F(4) represents a weighting function for all NEES events with momentum 
transfer 2iKF, the form of which depends on rr(lKzl). For isotropic relaxation times it 
follows correctly from equation (3.244 that F(R) and consequently AN are identically 
zero. In the other limit F(R) = 1, one has AN = 1 and consequently A,, = A o  from 
equation (3.18) with A = A ;  then all EES events contribute to p,,(T) and the lifetime 
(3/2n*)zO equals the electron-electron relaxation time. 

We recall that, according to equations (3.18) and (3.8), A, corresponds to the 
anisotropy parameter R in the RTA. This result can be derived rigorously as follows: 
permutation symmetry of the variables permits the replacement 

( k i r z i  + k2zt2 - k3zr3 - k4zz4)2 + 4k1,z1(klzz1 + k2zt2 - k3z~3 - k4z~4) 
in the integrand of (3 .22~) .  Now, as discussed in Appendix 1, the basic assumption in 
the RTA is that in equation (A1.2) the term in braces equals unity. For a spherical FS this 
means that klzr l  + kZzz2 - k 3 r ~ 3  - k4zt4 is replaced by klr(zl - (rJtr). By use of these 
replacements in equation (3.22~)  an elementary calculation yields a constant weighting 
function 

(3.24b) 

which, inserted into (3.22a), immediately results in AN = R. 

3.3. Application to anisotropy models and results 

Using the relations from the preceding subsections we shall now calculate the variation 
of A,, with anisotropy in z , (K)  for the anisotropy models from § 2. 

For the simple model of dislocation-induced anisotropy in K, given by equation (2.2), 
there is no theoretical basis for the magnitude of the ratio y//3. Thus, in order to facilitate 
the comparison with the results of KW, we adopt the value y / P  = (7/8)112 assumed by 
KW to match the experimentally observed sample dependence. 

In contrast , for our model of magnetic-field-induced anisotropy in Cu, the anisotropy 
of z ( B ,  K z )  according to equation (2.8) is well defined by the known FS geometry of Cu 
(Halse 1969). The parameters determining t(B, Kz)  are the average angular position 6 
of the necks with respect to the field direction, the angular width 2 0  of the neck region, 
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Table 1. Fermi surface parameters for Cu as used in the calculation of the magnetic-field- 
induced anisotropic relaxation time z ( B ,  ICz)  (equation (2.8)) and of the transport average 
in the anisotropic limit. 

Field 
direction 8 (deg) D (deg) N (t(m, K2))tr/zr 

(111) 70.5 10 3 0.885 
( 100) 54.7 10 4 0.719 
(110) 35.3 10 2 0.609 

0 0 4  - 0.8 

Figure 2. Anisotropic limit of the weighting function F ( f )  for the model of dislocation- 
induced anisotropy (equation (2.1)). Full curve: variational method (equation (3.240)); 
broken curve: RTA (equation (3.24b)); f measures the momentum transfer (= 2KFE). 

and the number of necks N that form a belt on the FS in which z(x, Kz)  = 0. The 
appropriate values for the main symmetry directions are listed in table 1. The evaluation 
of I1(KTF) (equation (3.23)) and the weighting function F(R) (equation (3.24a)), which 
determine the parameter AN (equation (3.22)), can be done by use of the Gaussian- 
Tschebyscheff quadrature formulae for the z-integration and Gaussian quadrature for 
the two other integrations. However, because of the discontinuity of t(B, K 2 ) ,  we find 
it suitable to carry out the z-integration analytically as described in Appendix 2. 

For the normalised screening wavenumber kTF = KTF/KF we use the free- 
electron values of 1.797 for K and 1.33 for Cu calculated from equation (3.21~)  and KF = 
(37~'n)~/~. The resultant weighting functions in the anisotropic limit for both models, i.e, 
for  CY/^ + 0 and B +. CO, are shown in figures 2 and 3. The dashed lines represent the 
constant values of F(R) = Rani in the RTA which are obtained from (3.246) in the 
anisotropic limit. The values of parameters A g '  , calculated from equations (3.22-3.244 
in the anisotropic limit, and Ran1 are listed in table 2. The maximum possible variation 
of A,, is given by the sample dependence SD defined in equation (3.10). (We retain the 
denotation 'sample dependence' also for the case of a magnetic field, although SD 
then represents the magnitude of the field dependence of A,, for a particular sample 
orientation.) SD, given in table 2, is calculated in the approximation A = A from 
equation (3.13) where again it is clear from (3.18) that the variational result is obtained 
by substituting AE' for Ran'. For the 'fractional Umklapp scattering' A we have taken 
the calculated value of A = 0.021 for K (MacDonald et al 1981) and A = 0.28 for Cu 
deduced from the work of Black (1978), as discussed in more detail below. 

The next interesting result from our calculations with respect to the comparison of 
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Figure 3. Anisotropic limit of the weight- 
ing functions F(P) for the model of mag- 
netic-field-induced anisotropy (equation 
(2.9)). Full curves: variational method; 
broken curves: RTA; (a)  (111)- (b )  (100)- 

C ! l ' ' I  
0 @ L  - 0 8  

and (c) (110)-direction of the magnetic 
field. 

Table 2. Calculated parameters R " '  (equation (3.7)) (RTA) and AT' (equation (3.19)) 
(variational method) for dislocation-induced anisotropy in K and magnetic-field-induced 
anisotropy in Cu and the resulting SD values for Ace. The results for K are based on the 
assumed value of ( ~ / / 3 ) ~  = a .  The experimental values of SD(exp) are discussed in 0 4. 

Dislocations (K) 0.116 0.063 0.021 5.49 2.98 7 . . . 1 3  
Magnetic field (Cu) 

0.130 0.086 0.28 0.33 0.22 =3 (111) 
0.391 0.272 0.28 1.01 0.70 (100) 

(110) 0.642 0.488 0.28 1.65 1.25 
- 
- 

the two methods and the experimental work concerns the variations of A,, as a function 
of the variables that determine the anisotropy of the residual scattering. These variables 
are a//3 for the case of dislocations (equation (2 .2))  and Nw,t = B for the case of a 
magnetic field (equation (2 .8 ) ) .  We plot the variations in the normalised forms 

(Ace - A',S,O)/(A:E' -A;;) = R/Ran' RTA ( 3 . 2 5 ~ )  

= A , / A y  (variational method) (3.25b) 

which follow from equations (3.8) and (3.18),  respectively. These forms have the advan- 
tage of being independent of the value of A and A. They also hold when the KW result 
(3.6b) is used. 

Figure 4 shows the variation calculated from equation (3.25) for the case of disl- 
ocation-induced anisotropy. It is evident from this figure that the curves from the RTA 
(dashed curve) and from the variational method (full curve), both calculated for 
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Figure 4. Normalised variation of A,,, equation 
(3.25), as a function of cu/p for the model of aniso- 
tropic dislocation scattering in K .  The full curve 
represents AN/AC'  and the dashed line R / R " '  
both calculated for ( y i p ) *  = $. The chain curve 
illustrates the approximate variation for y / p  + 0 
according to equation (3.26), as given by Kaveh 

:: 7 t k' i 
I 

Figure 5. Normalised variation of A,,, equation 
(3.27), as a function of Nw,t  - E in the case of 
a longitudinal magnetic field in Cu. Full curve: 
B / I  (111); dashed line: B 11 (110). 

(y//3)* = 4 ,  are nearly the same. We have also plotted the approximate expression (chain 
curve) : 

,/,ani (1 + d B > - *  (3.26) 

given by KW (1982), which is exactly valid in the limiting case y//3+ 0. On the basis of 
equation (3.26) KW have derived (1.1). This is easily seen by noting that LY = z Gp - 
pimp and approximately /3 - z di; , and thus a//3 = pimp/pdis which is the experimentally 
accessible variable entering equation (1.1). Clearly (3.26) and correspondingly (1.1) 
exhibit a much steeper variation around &//3 = 1 and a faster saturation than the exact 
curves calculated for a more realistic value of y//3. 

In contrast to the dislocation model, the magnetic field dependence of equations 
(3.25) is identical for both the RTA and the variational method and is given by 

(3.27) 

with the values of (z(x, K,)),,/z listed in table 1. Here z is the zero-field relaxation time, 
assumed to be isotropic (see § 2.2), and xB is defined in equation (2.8a). In figure 5 we 
plot the variation of A,,(B), given by equation (3.27), as a function of Nw,z for a (111)- 
and (110)-orientation of a sample with respect to the magnetic field. The variation for 
(100)-orientation lies between these two curves and has been omitted for clarity. It is 
seen from figure 5 that 95% of the maximum possible increase of A,,(B) is already 
reached for Nw,t = 6; i.e., for w,t = 1.5-3 when the orientation-dependent number of 
necks N (table 1) is taken into account. So in pure samples of Cu the saturation of the 
magnetic-field effect A,, can already be observed at moderate fields ( S l  T).  
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4. Discussion 

4.1. Comparison Of RTA and variational method 

As can be seen from table 2, the values of Rani from the RTA are systematically higher 
than those of A:' from the variational method, where the ratio R a n l / A g l  = 1.3-1.9 
depends on the particular anisotropy model. This overestimate of the effect of an 
anisotropic relaxation time on A,, by the RTA arises from the approximations given in 
Appendix 1 and its physical origin is most clearly seen from figures 1-3 as follows. 

When using the RTA it is assumed that after an NEES event on the average the electrons 
are in K-states which are characterised by an isotropic relaxation time (zJtr. However, 
this assumption cannot be justified for NEES processes with small momentum transfer 
2PKF, especially in the case of a continuously varying relaxation time as tdls(K) in figure 
1. It is clear from this figure that a small momentum transfer changes tdls(K) only slightly, 
whereas the difference from the average value (tdlJtr (corresponding to unity in figure 
1) is generally large. From this it follows that for small values of i one expects the 
weighting function F ( i )  4 R, which is confirmed by the numerical result in figure 2. Since 
the relaxation time is symmetric in K,, the same arguments hold for large momentum 
transfers P = 1. Thus the assumption of final states with an average relaxation time is 
only approximately valid for an intermediate range of P (see figure 2). This range can be 
considerably extended in the case of a discontinuous relaxation time anisotropy such as 
r (B,  K )  in figure 1, since now small momentum transfers can generate large changes in 
relaxation time (see figures 3a-c). This effect is also the reason for the finite slope of 
F(P) at P = 0 and 1 in these figures. 

In contrast to the marked deviations in the absolute values of Ran' and A g ' ,  the 
relatiuechanges of R and AN according to equations (3.25) as afunction of the anisotropy 
variables a//3 and N w , ~  differ only slighly for rd,s(K) (figure 4) and are identical for 
z ( B ,  K J  (see equation (3.27) and figure 5). This result can be understood by realising 
that, for an anisotropic relaxation time with a relative amplitude, 

that is independent of K, it immediately follows that 

For t(B, K,) according to equation (2.8) the amplitude A4 = (1 + xJ1 is independent 
of K,. Also for rdis(K) (equation (2.2)), apart from a narrow range around the pole in 
the denominator, M is approximately constant, thus explaining the close agreement of 
,/Rani and A N  /A Ti in figure 4. 

Our comparison of both theoretical approaches shows that the RTA may be used for 
an estimate of the order of magnitude of the anisotropy effect on A,, and that it 
reproduces the relative variation of A,, in cases where the form of t , ( K )  is essentially 
independent of the degree of anisotropy, as measured by Nw,t or alp. 

4.2. Comparison with experimental work 

For comparison with our theoretical results we have listed in table 2 the corresponding 
experimental values of SD for K and Cu. The data for K are taken from the review 
articles of KW (1984) and van Vucht et a1 (1985) and the S D  value for Cu has been 
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deduced from the increase of A,, in a high magnetic field observed in (111) Cu single 
crystals by Thummes and Kotzler (1985). We shall now first discuss the case of dis- 
location-induced anisotropy in K. 

4.2.1. Potassium. Till now, in heavily strained K samples a saturation value Ai:i could 
not be detected unambiguously (van Vucht et a1 1986). Thus the experimental S D  values 
given in table 2 are calculated from the highest and lowest coefficientSA,, that have been 
measured in K. From the data collected by KW (1984) S D  = 7, while more recent 
experiments (van Vucht et a1 (1985,1986)) yield S D  = 13. Van Vucht et a1 have pointed 
out that extrapolation of their data to the anisotropic limit by use of equation (1.1) may 
even lead to S D  = 30. However, such a high value seems doubtful because of the 
uncertainties involved in equation (1.1). 

From a fit of zdis(K) in equation (2.1) to a sample dependence of S D  = 13 we obtain 

1.34 (RTA) 

(y'P) = (1.57 (variational method). 

These high ratios y / P  correspond to a total variation in rdis(K) by factors of 7 or 12, 
respectively. Such a strong anisotropy of electron-dislocation scattering appears to be 
unreasonable for a metal with a nearly spherical FS. However, it cannot be ruled out that 
a much smaller variation in t d i s ( K )  is needed to explain the experimental S D  when a 
different anisotropy model is used. Therefore, it is highly desirable to have a more 
physically established model for electron-dislocation scattering in K. 

4.2.2.  Copper. Before discussing the case of magnetic-field-induced anisotropy, we 
briefly mention that KW (1983) used the relation (2.2) also to describe for Cu the 
enhancement of A,, by dislocations as observed upon straining Cu and CuAg samples 
(Steenwyck et a1 1981, Zwart et a1 1983). However, when using A = 0.3 from Black 
(1978), the measured sample dependence of S D  = 3 by Zwart et a1 cannot be explained 
by the anisotropy model, equation (2.1), since the necessary values of y//? are larger 
than 2, and this would lead to the physically unreasonable result that zdls(K) could 
become negative. On the basis of the results from § 4.1 (equations (4.1) and (4.2)) we 
have derived a modified form of equation (1.1) for describing the effect of dislocation- 
induced anisotropy on A,, in Cu which will be presented in a subsequent paper (Sprengel 
and Thummes 1989). 

Now, comparison of the experimental and calculated values of S D  for Cu in a 
longitudinal field B 11 (111) (table 2) reveals that the calculated enhancement of A,, is 
much lower than experimentally observed. We shall consider three possible reasons for 
this discrepancy, two of which are connected with our theoretical model and the third 
with the uncertainty in the value of the 'fractional Umklapp scattering' A .  

First, in deriving equation (3.13) for S D  we have assumed the validity of Matthiessen's 
rule for the UEES contribution. Thus our calculated values of S D  in table 2 only account 
for the increase in A,, by NEES. If, on the other hand, we use the relation (3.6b) based 
on an isotropic UEES relaxation time z g  , we obtain for B 1 1  (111) and A = 0.28: 

SD(Ran i )  = R a n i / A  = 0.46 

SD(A"" ' )  = AKi/A = 0.31. 

(isotropic rye) 
(4.3) 

As mentioned in 0 3.1 these values represent an upper limit for the contribution of UEES 
in the anisotropic limit and thus alone cannot explain the large differences between the 
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Table 3. Values of the transport average (z(=, K,)): ,  and SD', calculated by use of the FS 

model in figure A1 and normalised to the corresponding results for a spherical FS from tables 
1 and 2, respectively. 

(111) 0.750 0.124" 0.943d 1.53" 
0.115 0.957 1.39 

(110) 1.002 0.391 1.001 1.00 

a Exact integration of I ,  

0 10 20 30 
D i d e g )  

Figure 6. Values of the 'fractional Umklapp scattering' A as a function of the half angular 
width D of the neck regions that are needed to explain the experimental value of SD = 3 for 
(111) Cu samples in a magnetic field. Full curves: spherical FS averages; broken curves: 
averaging done with the FS model from Appendix 3. 

theoretical and experimental result. 
Second, in our theoretical approach all FS averages are calculated under the assump- 

tion of a spherical FS. In Cu the actual FS averages may be markedly different as can 
already be seen from the rather high value of the optical mass mopt/m = 1.42-1.54 (see 
table I1 in Beach and Christy 1977). In order to have a rough estimate of the necessary 
corrections for non-sphericity we consider in Appendix 3 a model FS for Cu bounded 
by two parallel Bragg planes. The resulting necks are either aligned parallel to the 
longitudinal magnetic field (B  1 1  (111)) or perpendicular to it (B  1 1  (110)); see figure A1 in 
Appendix 3. The calculated transport averages (z(x, Kz))tr/r and the corresponding SD 
values within RTA are listed in table 3. It is seen that for B I/ (111) the additional necks 
give rise to an increase of SD by a factor of -1.5, whereas for B / I  (110) SD remains 
essentially unaltered. This demonstrates that a more realistic FS model indeed brings the 
theoretical value for B I /  (111) closer to the experimental result but still cannot account 
quantitatively for the measured SD = 3. 

The third, and we believe most relevant , origin for the low theoretical SD value could 
consist in the uncertainty in the 'fractional Umklapp scattering' A for Cu calculated by 
Black (1978). If we use the experimental SD -L 3 and the calculated Ran' or AF'  for 
B 1 1  (lll), then a new value of A can be obtained from equation (3.13). To illustrate the 
possible range of A-values that are consistent with SD = 3, we have plotted in figure 6 
A versus the half-angular width D of the neck regions. This functional dependence of A 



Anisotropy and electron-electron scattering resistivity 3637 

on D is of interest since, experimentally, a small misalignment of the (111) Cu samples 
in the magnetic field results in enlarged effective neck regions, i.e., D > 10" (see also 
table 1). If we make allowance for a maximum disorientation of 5" in the experiments of 
Thummes and Kotzler, we get 10" s D s 14" which, according to figure 6, corresponds 
to 0.03 S A S 0.04 when the variational result is used, or 0.04 S A S 0.06 from the RTA 
result. When the results from Appendix 3 are used (dashed curves in figure 6), the 
corresponding ranges are 0.04 s A s 0.06 and 0.06 S A S 0.09. These values of A are 
about a factor of five lower than the result of Black (range within the chain lines in figure 

There are now several indications that Black's calculations may overestimate A .  
6). 

(i) The calculations of A make use of the eight-cone model of Ziman (1961) for the 
FS of Cu, which is not based on band structure calculations but simply has been matched 
to the width of the necks assumed to be circular. The corresponding pseudopotential, 
i.e., one half of the band gap in (111)-direction, is VG = 3.5 eV (Ziman 1961), which is 
much higher than the calculated and experimental value VG = 2.4 eV (Jepsen et a1 1981). 
From the analytical approach of Lawrence and Wilkins (1973) it follows that for the 
noble metals A = V G / ~ F .  Thus the eight-cone model will yield a too high value of A .  
Furthermore, Black calculated A using two orthogonalised plane waves. MacDonald et 
a1 (1981) have shown that, at least in the alkali metals, the inclusion of more than two 
plane waves leads to a reduction of A by a factor of -3, because of interference effects. 

(ii) On the basis of A = 0.28 from Black and of a theoretical value for the basic 
scattering rate l/z, for EES from equation (A1.4), the coefficient A$: can be calculated 
from equations (3 .8~)  and (3.9). Calculations of the basic scattering rate l /zo for Cu, 
using the Born approximation and simple Thomas-Fermi screening, give ( l / z , )T2  = 
0.35 x lo6 s-' (Lawrence 1976, Kukkonen and Smith 1973), while the more recent 
calculations of MacDonald (1980), taking also into account phonon-exchange scattering, 
yield a value of ( l / z , )T2  = 0.9 X 106 s-* K-2. The corresponding EES coefficients for 
Cu are A zz = 40 fR cm K2 and 97 fR cm K2, respectively. These coefficients are 
higher than the experimental value of A,, = 27 fR cm K2 for pure undeformed Cu 
(Steenwyk et a1 1981, Thummes and Kotzler 1985), thus giving further evidence for the 
value A = 0.28 of Black being too high. On the other hand, when using the (we believe) 
most accurate theoretical result of MacDonald (1980), the measuredA,, = 27 fR cm K-2 
gives A as low as 0.077, which is close to our deduced range of 0.04 S A S 0.06 from the 
variational method and Appendix 3. 

Experimentally, values of A are obtained as follows. As has been shown by Mac- 
Donald and Laubitz (1980) the high-temperature ( T  B Debye temperature) coefficient 
A,, may be written as A,, = 5X,,A/(8 - 2A). The quantity X,, may be determined from 
the deviation from the Wiedemann-Franz law at high temperatures. For the noble 
metalsX,,hasbeenmeasuredbyLaubitz(1970). HisresultforCuisX,, = 110 fR cm K-* 
(+50%). Identifyingthelow-temperaturecoefficientA,, = 27fQ cm K2withA,,at  high 
temperatures, which should be valid in Cu (MacDonald 1980), then A = 0.36 i- 0.12, in 
disagreement with our suggestion. Very recently, by means of radio-frequency size- 
effect measurements Stubi et a1 (1988) succeeded in measuring for Cu the energy 
averaged EES rate 2n2/3z, = (2.2 i- 0.2) X lo6 s-' K-2 T2 corresponding to ( l/zo) T 2  = 
0.33 x 106 s-l KP2, which is quite close to the theoretical result of Lawrence given above. 
Taken together with the measured coefficient A,,, these experiments, for the first 
time, make it possible to determine A without any additional theoretical parameters. 
Identifying again the measured A,, = 27 fR cm K-2 with the coefficient in the isotropic 
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limit, we obtain A = 0.18, which is lower than Black’s value. But, as seen from figure 6, 
A = 0.18 is still too high to account quantitatively for the measured SD = 3. 

We note that recently also KW (1984,1986) considered the effect of a magnetic field 
on the NEES contribution to the resistivity. The basic idea in their treatment is that, 
because of the orbital motion, a magnetic field tends to isotropise the electron distri- 
bution function in a plane perpendicular to the field and thus should reduce the NEES 
contribution in a sample with an anisotropic relaxation time t , ( K ) .  Though their results 
should be valid for metals with a closed FS, they are not applicable to metals with an 
open FS like Cu, where the existence of neck regions causes a magnetic-field-induced 
anisotropy, as we have shown in this work. 

5.  Conclusions 

We have calculated the effect of an anisotropic relaxation time on the electron-electron 
scattering coefficient A,, for resistivity in simple metals both by the use of the ‘gener- 
alised’ relaxation time approximation (RTA) and also, for the first time, by the use of 
the more rigorous variational method. Two anisotropy models have been considered, 
namely dislocation-induced anisotropy in K and magnetic-field-induced anisotropy in 
Cu. The conclusions from our results may be summarised as follows. 

(i) As compared to the variational method, the RTA overestimates the magnitude of 
the effect of anisotropy on A,, but describes the relative variation of A,, with anisotropy 
rather well, particularly in cases where the form of z , (K)  is nearly independent of the 
degree of anisotropy. 

(ii) Comparison of the experimentally observed sample dependence SD in strained 
samples of K with our calculations reveals an unreasonably strong anisotropy of electron- 
dislocation scattering in K which might be related to the simplicity of the underlying 
anisotropy model. 

(iii) In the case of Cu, our calculations clearly show that, owing to the FS topology, a 
longitudinal magnetic field enhances the electron-electron scattering resistivity, as has 
been experimentally observed in (1 11)Cu single crystals. A quantitative explanation 
within the variational method of the measured increase of A,, in a high magnetic field 
B 1 1  (111) requires a ‘fractional Umklapp scattering’ of A = 0.04 or A -- 0.06 when the 
improved FS model from Appendix 3 is used. These numbers are significantly lower than 
A = 0.28 of Black (1978). By considering both the approximations in the calculations of 
Black and the theoretical and experimental results for the electron-electron scattering 
rate in Cu, we have given evidence that the A from Black may indeed be too high. 
Further measurements of A,, in Cu for various magnetic fields and crystallographic 
orientations are needed in order to test the predictions from our calculations and will be 
helpful in drawing a clear corlclusion as to the value of A .  
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Appendix 1. Relaxation time approximation for EES 

In order to show the approximations involved in the ‘generalised’ relaxation time 
approximation (RTA) made by KW we consider the exact form of the collision integral 



Anisotropy and electron-electron scattering resistivity 3639 

for NEES, 

(Al.l)  

where @ i  = -eE v(Ki)zr(Ki) ,  and WN(l, 2 - t  3, 4) = transition probability from states 
K , ,  K 2  to K 3 ,  K4 for NEES. Inserting equation (Al . l )  into (3.2) and allowing for current 
conservation we obtain: 

(A1.2) 

One approximation used by KW consists of setting the term in large brackets equal 
where ti = t , ( K i ) .  

to unity. Then t F e  depends only on energy and can easily be calculated, 

(A1.3) 

Here 1 - A is the fraction of NEES events (equation (3.11)) and l/to is a basic scattering 
rate for EES (Lawrence and Wilkins 1973) given by 

(A1.4) 

with the abbreviation: 
4 

(@({si>)> = n J (dsi /ut)@({si~)  
f = 1  

and the transition probability W for all EES events. 
With the reasonable assumption that the scattering from static lattice defects is 

independent of energy the energy average of t ;e ( E )  can be calculated. This yields the 
constant t F e  entering equation (3.2), 

(A1.5) 

The relation for t y e ( K )  is similar to equation (A1.2) except that W, is replaced by 
the transition probability Wand the term in braces is modified, 

( A u t r )  * E  d3K3 d 3 K 4  
2-- d 3 K 2  i u l t l  . E  1 ( 2 4 3  (243  

where A u t ,  = ulzl  + 0 2 7 2  - u 3 t 3  - u4t4,  

(A1.6~)  
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For z kL ( K ,  E )  to be independent of zr(K) one has to assume that the term in braces 
can be replaced by 

Within these approximations the transport scattering rate for EES is given by 
1 - - 1 

zee(K, E )  t z ( K ,  E )  T e e  

(A1.6b) 

(Al.7) 

which differs from equation (3.4) only by the K-dependence of the UEES contribution. 
Inserting equation (A1.7) into ( 3 . 6 ~ )  and using z,", , zFe S z r  results in 

In principle, the DMR for both the NEES and UEES contributions to pee can be calculated 
from this expression. However, because of the uncertainty in the explicit K-dependence 
of z y e ( K ,  E )  the treatment of the UEES contribution in the presence of an anisotropic 
z,(K) needs further approximations. In making such an approximation one condition is 
that for isotropic zr equation (A1.8) must give the correct relation for pee, 

1 
pee(zr = const) = = - 

ne2 i z:L(K, E )  J)tr 
(A1.9) 

The assumption of KW at this point is that l/zye(K, E )  in equation (A1.8) is isotropic 
and can be approximated by its average value in (A1.9). For cubic symmetry this average 
is given by 

Here 

A = ( ~ A U ~ * W ) / ~ ( / V ~ ~ W )  with AV = v 1  + v 2  - u 3  - u 4  (A1.ll)  

is the (fractional Umklapp scattering) with respect to electric transport as first introduced 
by Lawrence and Wilkins (1973). 

Appendix 2. Evaluation of F ( i )  for a longitudinal magnetic field 

Because of the discontinuity of the anisotropy model for Cu in a longitudinal magnetic 
field, equation (2.8), the convergence of the integrals over z in the weighting function 
F ( 1 ) ,  equation (3.24a), is rather weak. Therefore, in this case it is more favourable to 
perform the z-integration analytically as follows. For the function I (x l ,  x2) in equation 
(3.24~) we use the following relations: 

(A2.1) 

(A2.2~)  
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which in the even z-integral can be written as 

Partial integration then leads to 

3641 

(A2.2b) 

(A2.3) 

which is valid for any t ( K , ) .  

inside the z-integrals the following equality 
To evaluate F ( i )  for the particular anisotropy model from equation (2.8) we use 

31 = g(iy + az) + ( i y  + az)g'(iy + az). 
''2 az 

( A 2 . 4 ~ )  

Here 

g(x) = O(kb - x)e(-ka + x) + e(+, - x)o(kb + x) (A2.4b) 

where 8 denotes the Heaviside function and k,, kb are determined by thelower and upper 
boundaries of the neck regions (see figure 1). 

Since g'(x) = dg/dx consists only of b-functions, the remaining integrals are those 
with g(x) in the integrand. Partial integration yields the final result 

1 
x [A( iy )  - A(-iy)] - [ B ( i y )  + B(-iy)] - - [A(iy)  - A(- i y ) ] ' )  

Jd 

(A2.5) 
with the notations 

A(x) " A ~ ( x , k a )  -Al(x ,kh)  

B(x) E Bl(x, ka) - Bl(x, kb) 

k + x  

k - 3~ 
a g(k  + 2x) - -)[a2 4 - ( k  + X)'"''}. 

Further evaluation of the integral in equation (A2.5) is done numerically. 

Appendix 3. (T(x, K I ~ ) ) ~ ~  in the presence of necks on the FS 

We estimate the effect of non-sphericity of the FS of Cu on the transport average of 
t ( ~ ,  KII ) ,  where Kil denotes the component of K parallel to B .  For this purpose we 
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Figure A l .  Fermi surface model for Cu used to estimate the effect of non-sphericity on the 
transport averages. 

consider a model FS for Cu bounded by two parallel Bragg planes placed at i G / 2  and 
with the magnetic field parallel to the plane normal for B / I  (111) or perpendicular to it 
for B 1 1  (110); see figure Al.  The resulting necks in figure A1 do not contribute to the 
field dependence of z ( B ,  Kl,) and thus have been neglected in our model of magnetic- 
field-induced anisotropy in § 2.2. However, these necks will modify the transport aver- 
ages, equation ( 3 . 2 ~ ) .  

Using two orthogonalised plane waves we get within simple perturbation theory the 
electron energy for the FS in figure Al ,  

where k = K / K k ,  g = G / K f - ,  Kf- (2meF/h2)’ i2 ,  z = 1 - 2k,/g parallel to ( l l l ) ,  
ZG ( v &  + .z2)ll2 and vG = (2/g)’VG/2&,. VGis  thepseudopotentialin(111)-direction. 
Using one conduction electron per atom and an angular neck radius of D = lo”, we 
calculate the Fermi energy eF and VG iteratively; the results are eF = 6.65 eV and VG = 
2.26 eV. 

The velocity of the electrons is given by 

n(K)  = ( l /h )a&/aK = ( h K k / m ) [ k x ,  k y ,  (g /2)z ( ( I / zG)  - I)]. (‘43.2) 

The surface element entering the integrals in the transport average (equation (3.2.)) 
writes now 

(A3.3)  
With the notations of Appendix 2 the relaxation time ~ ( x ,  K11) from equation (2.9) can 
be written as 

(A3.4)  
where g(k11) is defined in equation (A2.4b).  Insertion of equations (A3.2)-(A3.4) into 
(3.2a) leads to the transport average (z(x, K ~ I ) ) ~ ~ ,  which can be written in the form 

dSF/fiu = ( m / h 2 )  K$(g/2)  d z  d q .  

z(@J, Kll>/z = 1 - g(k11) 

(A3.5)  

where KF is the free-electron Fermi wavenumber and ull = U 9 B/lBI. The integral Ns is 
easily calculated analytically. For 11 - (2/g)’I S 2vG the result is: 
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3 1 - 3(z(zc3 - 2 )  - v'G ln[zG + 21 + V G  tan- '(z/vc))i  forB / I  (111) 

forB / /  (110). [3(2/g)2 - 1]/2 + i(z(z, - 2 )  + v $  ln[z, + 21); 
N s  = 1 

(A3.6) 
Further, since g(kll) (equation (A2.4b)) is only different from zero in those regions 
indicated by the broken curves in figure 7, which are far from the necks under con- 
sideration, the integral I ,  can be approximated by its value Z: for a Fermi sphere: 

(A3.7) 

However, forB I /  (111) also an exact value for I ,  can be obtained by analytical integration 
and subsequent iterative solution fork, and k,,. The values of the integrals, the transport 
averages and the corresponding values of SD within RTA (equation (3.13)) are collected 
in table 3. Numbers indicated by asterisks are obtained by the exact integration of Z,. 

I ,  21 1: = k3 h - k3 a .  

References 

Beach R T and Christy R W 1977 Phys. Rev. B 16 5277 
Bergmann A,  Kaveh M and Wiser N 1981 Phys. Reu. B 24 6807 
Biack J E 1978 Can. J .  Phys. 56 708 
Callaway J 1959 Phys. Rev. 113 1046 
Chambers R G 1969 The Physics of Metals Electrons vol 1 ed. J M Ziman (Cambridge: Cambridge University 

Dugdale J S and Basinski Z S 1967 Phys. Reo. 157 552 
Hake M R 1969 Phil. Trans. R. Soc. A 265 507 
Jepsen 0, Glotzel D and Mackintosh A R 1981 Phys. Rev. B 23 2684 
Kaveh M and Wiser N 1980 J .  Phys. F: Met. Phys. 10 L37 
- 1982 J .  Phys. F: Met. Phys. 12 935 
- 1983 J .  Phys. F: Met. Phys. 13 1207 

- 1986J. Phys. F: Met. Phys. 16 193 
Kohler M 1948 Z.  Phys. 124 772 
Kukkonen C A and Smith H 1973 Phys. Reu. B 8 4601 
Laubitz M J 1970 Phys. Rev. B 2 2252 
Lawrence W E  1976 Phys. Rev. B 13 5316 
Lawrence W E and Wilkins J W 1973 Phys. Rev. B 7 2317 
MacDonald A H 1980 Phys. Rev. Left. 44 489 
MacDonald A H and Laubitz M J 1980 Phys. Rev. B 21 2638 
MacDonald A H ,  Taylor R and Geldart D J W 1981 Phys. Reu. B 23 2718 
Peierls R E  1955 The Theory ofSolids (London: Oxford University Press) 
Pippard F R S 1964 Proc. R .  Soc. A 282 464 
Schroeder P A  1982 Physicu 1091110 B 1901 
Sprengel J and Thummes G 1989 to be published 
Steenwyck S D,  Rowlands J A and Schroeder P A 1981 J .  Phys. F; Met. Phys. 11 1623 
Stubi R ,  Probst P-A, Huguenin R and Gasparov V A 1988 J .  Phys. F: Met. Phys. 18 2479 
Thummes G and Kotzler J 1985 Phys. Rev. B 31 2535 
van Vucht R J M, van Kempen H and Wyder P 1985 Rep. Prog. Phys. 48 853 
van Vucht R J M,  van de Walle G F A,  van Kempen H and Wyder P 1986 J .  Phys. F: Met. Phys. 16 1525 
Wiser N 1984 Contemp. Phys. 25 211 
Ziman J M 1960 Electrons and Phonons (London: Oxford University Press) 

Zwart J, Pratt W P Jr,  Schroeder P A and Caplin A D  1983 J .  Phys. F: Met. Phys. 13 2595 

Press) 

- 1 9 8 4 A d ~ .  Phys. 33 257 

- 1961 Ado. Phys. 10 1 


